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Shock waves provide one of the most powerful means for studying the properties of materials at high pressures. 
Conspicuous among the materials investigated are those which undergo polymorphic phase transformations when acted upon 
by shock waves. The study of the kinetics of such transformations is both of interest in itself and useful in applications to 
the problem of determining the properties of high-pressure phases, since the phase composition of the final states behind a 
shock wave is often a nonequilibrium state owing to the special features of the kinetics of the transformation. Up to now, 
researchers have accumulated a fairly large amount of experimental data on phase transformations in shock waves, and a 
survey and analysis of these is given in [1 ]. Despite these advances, it must be recognized that the physical picture, even in 
its main outlines, is still not sufficiently clear, while the theory of the phenomenon is in the very earliest stages of its 
development. The reason for this lies in the extraordinary methodological difficulties of the experiment with which a 
researcher is confronted when he tries to penetrate into the details of the structure of a shock-wave front. The traditional 
shock-wave method is based on a study of the final result of the shock loading and yields very little information in the 
details of the transition process. Under these circumstances, we consider it helpful to use the opposite approach as well - 
to construct physically realistic models and investigate them numerically in order to clarify the characteristic features of the 
phenomenon that can be experimentally verified. Of course, today it is impossible to construct a complete microscopically 
adequate theory; it must necessarily be semiempirical, with numerical parameters which can be determined only roughly. 
Subsequent comparison with experimental results can help in correcting both the model and the values of the numerical 
parameters. As the object of our investigation, we selected quartz in the region of its transition into stishovite. The choice 
of quartz was not an accident. The reason for it is that experimental material already available is capable of casting some 
light on the nature of the transition kinetics and severely restricting the range of choice in the construction of the model 
for the phenomenon. One such fundamental fact is the constant velocity of the shock wave without nonstationary doubling 
of the front in the region of the phase transition. This property makes the transition of quartz into stishovite (together 
with the transition of graphite into diamond) substantially different from the phase transformations of other materials in 
shock waves. 

1. The Physical Model. The Determining System of Equations. In [2] we advanced the hypothesis that the phase 
transition of quartz into stishovite in a shock wave takes place through a martensitic mechanism. Today it is recognized 
that this mechanism is fundamental in shock-wave polymorphic transitions at relatively low pressures [ 1 ]. However, in the 
case of quartz the martensitic mechanism does not appear in its pure form. The essence of this action is that a reaction is 
produced and maintained by a fairly intensive field of sheafing stresses which exists in the wave front. In support of this 
hypothesis, we can advance two weighty arguments: in the first place, in static experiments on the phase transformation of 
quartz, where there are no shearing stresses, we do not find a martensitic type of reaction; in the second place, the shearing 
stress is the only parameter which decreases discontinuously when single compressibility is replaced by double compressibility, 
with the formation of a nonstationary two-wave configuration. In the first wave, behind its front, the shearing stresses relax 
and the second wave is propagated in the medium with isotropic pressure. It should be borne in mind that the reason the 
shock-wave velocity remains constant without doubling is precisely this sharp variation of the stishovite concentration when 
single compression is replaced by double [3]. It should be noted that the role of the shearing stress is twofold: On the one 
hand, its action gives rise to a multiplication of lattice defects which serve as possible nucleation centers, and on the other 
hand, the growth of the nucleus is itself undoubtedly caused by a shearing-stress field which is external to it. If the latter 
were not true, then under statistical conditions the martensitic mechanism would be operative, since in any real specimen 
there are always enough defects. Furthermore, in a doubled shock wave there would be no slowing down of the reaction, 
since unlike the shearing stress, the number of defects depends only slightly on whether we have one or two waves passing 
through the material. 

As was noted in [2], the necessity of the existence of a shearing stress for the quartz-stishovite transition may be 
due to the fact that the characteristic deformation of the transition has no invariant plane, and the resulting disorientation 
may be eliminated either by plastic shear or by rotation of the block as a whole. This is what distinguishes in principle the 
quartz-stishovite system and similar systems from others in which the lattices of the phases are well adjusted and a marten- 
sitic reaction does not require any external shearing stress. The martensitic reaction in systems of the quartz-stishovite type 
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may be distinguished from the general mass of  similar reactions, and by reason of  its characteristic criterion, we may call it  
tensogenic. 

Proceeding from the foregoing, we can formulate the first fundamental requirement for the construction of  a model  
of  the phenomenon. This requirement is t h a t  the medium can be described as elastoplastic (we shall consider it  isotropic), 
with the inclusion of  a relaxation of  sheafing stresses based on the dynamics of  dislocations. Thus, the scheme must include 
equations which describe the motion and multiplication of  dislocations. With regard to the last fact, we cannot at this 
point go into details concerning the operation of  the dislocation sources but  must use an empirical relation for the disloca- 
tion density as a function of  the plastic-shear value [4, 5]. The total  deformation must be divided into an elastic cubic 
compression, an elastic shear, and a plastic shear. Another  characteristic feature of  the model  is the use of  the theory of  
finite deformations. The reason for this is that, in the first place, on an elastic front the elastic shear is f'mite, and as the 
relaxation of  shearing stresses proceeds, the plastic shear becomes f'mite (of the order of  the cubic compression). Finite 
deformations are introduced by a scheme similar to that  of [6, 7]. The model is completed by the kinetic equation for 
determining the phase concentrations and their equations of  state. We shall consider one-dimensional plane flow and 
choose the coordinate axes in such a way that the x-axis will be directed along the flow, while the other two axes are 
perpendicular to it. These directions will be the principal axes of  the deformation and stress tensors. 

The matrices for the total  deformation F, the elastic deformation F e, and the plastic deformation F p have the 
following form: 

F =  i , = 
~, 0 

From the condition F = F e Fp we obtain the relations 

h = z~z~, 

0!ei (i 0 00t Z~ F v = Z v~ 
' i 

p e  ~2L2 t. 

The condition that  the plastic deformation does not  change the volume can be reduced to 

It is convenient to introduce new independent variables instead of  these: the cubic compression 

and the elastic pure shear 

The elastic pure shear can be expressed in the form 

6 = (~1) - 1  

= - 1  = ( ) 

We introduce the principal values of  the tensor for the stresses gl and o 2 = 0 3 . 
crik - the cubic pressure 

p = ( t /3) (~  + 2a~) 

We shall assume that  the spherical part of  

at temperature T = 0 (cold p r e s s u r e  Peold) depends only on the compression 6: Peold = Pcold (6)" The form of  this function 

in the nonlinear case, generally speaking, is arbitrary and can be determined separately. We shall consider the deviator part 
of oik (the maximum shearing stress) and denote it by r: 

= (t12)(~1 - -  ~ ) .  

The deviators of  the stress and deformation tensors are interrelated. For  infinitesimal transformations this relation is given 
by a linear Hooke's  law. We introduce the matrix of  an infinitesimal elastic deformation from the state whose deformation 
is given by the matrix {Xe} to the state {Xe q- d~e} . The desired matrix will be {1 -? d~,e/k~}. The deformation tensor 
will begiven  by the matrix {dJW/X~} , and Hooke's  law can be written in the form 

for 6 = const, i.e., 

Here the shear modulus p is, in general, a function of  the compression and the:elastic shear. Essentially, (1.1) is the defini- 
tion of  the shear modulus, and its physical meaning becomes clear when we make an additional assumption conceming the 
function/a(6,  ~e). An essential restriction on the form of  this function can be obtained as follows. We calculate the work 
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of the elastic forces of  deformation of  the body.  The work done by the body when we change X i by dX i, referred to a 
unit mass of  the body,  will be 

Using the properties of  the deformation being considered, we finally obtain 

. . . .  , 4  {d~ e d~P~ 
dA 1 (9) d p = _ . . g _ +  ~ 

Thus, the total  work is equal to the sum of  the elastic work of  the cubic compression, the work of  the elastic shear, and 
the work of  the plastic shear. Now we determine the internal energy as a function of  the deformations from the first law 
of thermodynamics,  omitting the plastic deformation, since it is irreversible. It was found experimentally that not all of  
the energy of the plastic deformation goes into heat; about 10% of  it goes into the latent energy of  the elastic stresses of  
the newly generated dislocations, but  we shall disregard this part. Then, for the change in the internal elastic energy we 
obtain 

1 4 �9 d~ ~ 
dE~ = T Px (p) do 3 p ~ " 

From the fact that dE e is a total  differential, it follows that 

o. 

Together with (1.1), this yields 

,u = 8q~(~, ') ,  

where ~0(~ e) is an arbitrary function of  the elastic shear. Since in our case the elastic shear is almost always small, we shall 
assume that ~o(~ e) is constant, after which we have bt = ~06, z = --p06 In g~ , if we take r = 0 when ~e = 1. 

In order to simplify the model, we shall describe our two-component  medium by a single shear modulus. In a more 
exact theory, we should average the moduli  of the components,  both the shear moduli  and the cubic-compression moduli  
affecting each other, since the cubic compression of  a specimen is accompanied by shears of the components in order to 
maintain the continuity,  and vice versa. To the elastic pressure and the energy, we add the thermal terms, and we assume 
that we have additivity of volume, internal energy, and entropy of  the components for equal temperatures and pressures. 
The kinetics of  the plastic deformation will be described by Orovan's equation 

1 d~ p bNv,  ( 1 . 2 )  
~p at 

where b is the Burgers vector, N is the density of  dislocations, and v is their velocity. 

In the case of  small deformations, we usually consider b and N independent of  the compression; in our case this 
functional relation must be taken into account. We introduce the quantities b o and N o, referred to an uncompressed 
unit volume; then b = bo6-V ~, X =  N0627 (the dislocations are frozen into the lattice). Now we rewrite (1.2) in the form 

! d~. .~ = - -  boNo81'3v. g~ dt 

The derivative with respect to time should be taken in Lagrange's sense. The variation of  the dislocation velocity as a 
function of  the shearing stress will be described by Gilman's formula 

v = ct exp (--r0'T), (1.3) 

where c t is the transverse velocity of sound and r o is a constant parameter. 

For  the dislocation density we take a linear variation as a function of  the plastic deformation 

A'o = A'00 + k I)I ~P. (1.4) 

In our model we assume that the relaxation of the sheafing stresses takes place only as a result of  the conservative motion 
of slip dislocations. In the exact theory we should also take account of the relaxation resulting from the phase transition. 
If we assume that the transition is stimulated by the shearing stress, then, according to Le Chatelier's principle, it should 
lead to a decrease in r. 

The last point to be considered in the model is the kinetic equation of the phase transformation. We consider a 
Lagrangian unit element of volume. Then there will be dN o/dt  dislocations generated in it per unit of  time. However, a 
dislocation, being a linear object, cannot serve as a center of  nucleation. Such a center may be, for example, the inter- 
section of  dislocations; therefore, we introduce the parameter lo, the average distance between active nodes of the 
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dislocation network. Then (l/polo)dNo/dt centers will be generated per unit of  time in a gram of  material. From the total 
number we must subtract those which belong to the unstable phase. Assuming that the defects are uniformly distributed, 
we can find this fraction. To do this, we use the relations 

v l  + v~ = v, ~'~p~ + F~I~.., = 1, fi.p~ + (I - B)%_, = t~,. 

where/~ is the weight concentration of  the first (light, unstable) phase. We find that the fraction of  the volume Vx/V = 
[3O/px and the rate of  generation of  centers in the light phase is equal to (~6/lop~)dNo/dt. 

Crystals of the new phase begin to grow on the centers thus formed. We denote the time of  generation by t '  and 
denote the mass of  the crystal at time t by m(t' ,  t). Now in order to find the concentration of  the heavy phase, 1 - ~, 
we must integrate with respect to the generation time t '  the entire mass of  the new phase in a gram of material 

r 

~t f ~ (t') d-Vo , 
1 - -  f~ (t) = 7 o  " Pl (t') -g'i "r m (t , t) dr' (1.5) 

e0 

(t o is the time at which the critical conditions for the start of  the transition are reached). The integration is carried out 
along a streamline. It remains now to determine the form of the function m(t' ,  t). We assume that the shape of the 
growing crystal is the same as in an equilibrium martensitic crystal, namely, a double-convex lens [8]; then its volume is 
proportional to R s/: ,  where R is the radius of  the rim of  the lens. We introduce the rate of  growth v I of  the lens radius; 
then 

R ( l ' .  t) = y z, 1 (t") dr". 
t '  

Here we must make an assumption concerning the rate of  growth v a of  the crystal, since we do not have sufficient experi- 
mental data. All we know is that the rate of  growth of  a martensitic crystal, like the velocity of  the dislocations, may take 
on a value equal to the transverse velocity of  sound. This is natural, since the restructuring of  the lat t iceat  the boundary 
takes place through motion along the transition dislocation boundary. Starting from these rough ideas, we assume that the 
velocity v 1 is qualitatively the same kind of function of  the shearing stress (necessary in the case of  a tensogenic transition) 
as in the case of  slip dislocations (1.3). The only difference is that we introduce into it a threshold with respect to r: 

( ) T 1 
vl ct exp ~--x2 . 

For r ~< r 2 we set v, = 0. We must also set V 1 = 0 in the region of  thermodynamic stability of  the light phase. If  the 
shock wave has suffmient intensity, the reaction begins at once on the front, with generation on the defects in the motion- 
less material (the term Noo in (1.4)). In the kinetic equation (1.5) there must be corresponding to this a term on the right 
side equivalent to a 6-type source with a generation time equal to the time of  arrival of  the shock wave, i.e., dNo/dt '  in- 
dudes a term 2N0or(t' - -  to) . Now we write the complete system of equations in Lagrangian variables: 

the equation of  continuity and determination of  velocity 

Ox/Oa = 1/9, 0 x/Ot = u, 

the Euler equation 

Ou/Ot -1- O~llOa = O, 

the entropy equation 

os I (a~  0 8 ,  4 i i �9 o~p 
= - -  - - q ~ ) ' Y / ' T  3 2" 0 ~v ot -Y/- r 

(this first term gives us the growth of  the entropy as a result of  the nonequilibrium phase transition [2], the second that 
caused by the work of  plastic deformation, where the Ck are the Gibbs thermodynamic potentials), 

the equation of  state 

V = ~V~(p, T) -if- (l - -  ~)V~(p, T), 
E = [~E~(p, T) q- (t - -  [~)Z~_(p, T), S = ~S~(p, T) -k (1 - -  [~)S2(p, T) 

(the equations of  state of  individual phases will be given below), 

the definition of  pressure 

p = (I/3)(cq -- 2oh) , 

Hooke's law for shear 
al  -- a~ = - -2uo~ 1,1 ~ ,  
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the connection between shear and cubic compression 

~l,~,'(S = t, 

the kinetics of plastic flow 

( l /~p)O~,/Ot  bflNo6Ua,, ,, 

"~ ( - r 0 h ) ,  Nu -~= -Voo -'- k In ~: , r = c~ exp 

the kinetics of phase transformation 

t 

t,,,O[3F "' , I - -  [3 =: b "~ ~ o  N~176 "- (l~ l) --:../~bop~o1,': ! [~ (V) bc:~(t')pi -~ (V) (Xoo -i- k in ~Y) v.P, 5'" (V, t) dz', 
i l l  

) (t', t,) = U,") ,'i =  ,xp i' 

Here ~F is the concentration of the light phase on the wave front; B is a proportionality factor, a parameter which can be 
varied. We write out the boundary conditions. On the piston u = u o . On the elastic front of the shock wave we have an 
absence of plastic shear }~ = 1, with the presence only of the light phase ~V = 1 and exact Hugoniot boundary conditions. 

2. Numerical Calculations and Their Results. For the numerical integration of the system of equations, we set up a 
special program whose main distinguishing features were the use of the method of characteristics and exact boundary condi- 
tions on the elastic front of the shock wave. The equations of state of the phases were taken in the form of sums of cold 
and thermal terms. The cold pressure was taken in the form 

2 

I(  T d ,  t ,~ (p) = --z-~ ~, ~-;2-., - 
�9 L~ 0 / J 

where Po is the initial density; c o is the initial volumetric velocity of sound. The ratio of the thermal pressure Pr to the 
volumetric thermal energy (the Gruneisen coefficient F)  is assumed to be constant. The thermal energy (per gram), ET, is 
proportional to the temperature T, with a constant proportionality factor c v . The total energy which appears in the 
Hugoniot equation for the shock-wave adiabatic E = (1/2)~1(1/p0 - -  t/o), can be written in the form 

P 
dp 

E = E  o+Spx(p)-~'+ 2 ~o : , ~ 2  
PO 

The entropy can be found by integrating the equation 

T d S  = d E T  - -  P r  d V .  

We used the following values of the constant parameters: 

quartz 

stishovite 

P0 = 2.65 g/cm 3, c o = 3.7 km/sec, = 6, / '  = 0.653, c v = 1.25. t07 ergig- deg, 

Eo = O, So =0;  

P0 = 4.29 g/cm 3, Co = 7.6 km/sec, = 3, F = 1.2, c v = t.25.107 e~g/g.deg, 

E0 = 6.6"t09 erg/g, So = --2.6"106 erg/g.deg, 

Here S O is the entropy in the normal state; the entropy and energy of the quartz in the normal state were assumed to be 
zero. The initial shear modulus is #o = 0.2 Mbar. The modulus of the Burgers vector is b o = 5"10 "S cm. The parameters 

in the dislocation density were N00 = 2. t0 s ern-~, k = 1012 cm-2. The parameters in the dislocation velocities were % = 
30 kbar, "q = 30 kbar, "r~ = t5 kbar. 

The threshold % = t5 kbar was selected from the condition that at the t'trst break-point of the shock-wave adia- 
bat of quartz (and below it) the reaction should be impossible. In a stationary wave with an amplitude of p = 140 kbar 
at the plastic tail, the parameters of the equations of state match the known data on the dynamic compressibility of quartz 
and stishovite, except for one point which we shall discuss in more detail. In our case there is a decrease in the shear 
modulus in comparison with the experimental value and an increase in the curvature of the cold pressure of the quartz. 
The reason is the following. In the general case the position of the elastic shock-wave adiabat with respect to the wave ray 
(in the plane o~, V) going from the point of the initial state to the first breakpoint can be arbitrary, and in particular it 
can be such that the wave ray will lie entirely below the elastic shock-wave adiabat. For quartz this does in fact happen, 
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and thus, the velocity of the shock wave at the break-point is D = 5.7 km/sec, while the longitudinal velocity of sound is 
c l = 6 km/sec. A consequence of this will be a constant overtaking of the elastic wave by the plastic wave, i.e., in front of 
the plastic wave there will be propagated an elastic precursor with constantly decreasing amplitude. The presence of an 
elastic precursor does not change anything essential in our problem, but it is very inconvenient for numerical calculation, 
since it includes an ever-larger number of calculation points, so that the entire available computer capacity is used up in 
calculating this quantity alone. In our case the wave ray intercepts the elastic shock-wave adiabat. In this case the total 
picture of the flow will be stationary in the limit, which means that we can manage with a constant number of calculation 
points. In the calculations we used 50 points. The constant factor in the formula for the kinetics of the transition was 
varied in order to show that for a sufficiently "strong" type of kinetics the mechanism establishing a constant wave velocity 
will be operative. In order to save machine time, this variation was carried out as follows. First we carried out the calcula- 
tion with a minimum value of B = 1, and the calculation was continued until a stationary profile was established. Next we 
substituted larger values. Since the stationary profiles for different values of B were no longer very different from one 
another, each new constant value was reached rapidly. We carried out similar calculations with varied values of B for two 
values of the boundary velocity: u o = t.371 km/sec and 1.698 km/sec. The final states in both cases lie above the break- 
point, in the region of phase mixing. The process of establishing a steady state can conveniently be illustrated on the graph 
of a 1 as a function of V. In a stationary profile the points at which the profile is cut should lie on a single straight line, 
while in a nonstationary profile with a two-wave configuration they should lie on two straight lines. In Fig. 1 we show a 
family of curves for the case u 0 = 1.698 km/sec, B = 1. We can see the establishment of one stationary front. The total 
time for establishing this is *1"10 -8 sec. It should be noted that the functions we chose for the velocities of the disloca- 
tions tend exponentially to zero, and therefore a formally rigorous stationary condition is reached only asymptotically as 
t -+ o~, but even at times of the order of those indicated, the profiles differ only slightly from the limiting cases. Both of 
the steady-state solutions (for different values of Uo), from B = 1 to B = 4, lie practically on the same wave ray. For 
u 0 = 1.371 km/sec, D = 5.63 km/sec, for u 0 = 1.698 km/sec, D = 5.66 km/sec, i.e., the values of D agree within the limits 
of our accuracy. 

Figure 2 shows a profile of al (x) in a coordinate system in which the front is at rest (for the front x = 0) for the 
case u o = 1.698 km/sec. It can be clearly seen that the front consists of a stationary sequence of two fronts: an elastic 
shock-wave front with a practically constant flow behind it and, at a fixed distance from it, a plastic-wave front on which 
the phase transition takes place. This distance is determined by the action of the stability mechanism. The second wave 
finds itself a location such that the integral determining the concentration of stishovite (1.5) (in the stationary profile the 
integral with respect to t can be replaced with an integral with respect to x) will have a given value such that the final 
state will lie on the wave ray. If, for example, the distance between the waves is reduced, there will be an increase in the 
amount of stishovite produced and a decrease in the velocity of the second wave, after which the distance between the two 
waves will increase, and vice versa. From this point of view it is clear that the more intensive the kinetics, the greater must 
be the distance between the elastic and plastic waves. This is confirmed by the numerical calculation. In Fig. 2 we show 
the profiles with B = 1 and B = 3, which clearly illustrate this fact. 

Interesting problems arise in connection with the possibilities of experimentally verifying the results of the calcula- 
tion. It would be desirable to establish the presence of a stationary two-wave structure. Unfortunately, this problem is 
very difficult if the distances and times correspond to the calculated ones; however, as already noted, the kinetic constants 
may differ from those adopted, and a study of the front structure may be possible. 
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THE PROCESS OF SPALL FRACTURE 

G. I. Kanel' and L. G. Chernykh UDC 532.593 

Many investigations of spall phenomena after the emergence of the compression pulse to the free surface of a speci- 
men show that the strength value realized in spalling depends on the characteristic time of action of the load. A number of 
studies [ 1-4] propose discrete criteria for spall fracture which determine the possibility of failure in terms of the value of the 
tensile stress and the time during which it acts at a particular cross section of the specimen. However, on the one hand, the 
load at any cross section may, in general, vary arbitrarily, and on the other hand, the failure process itself leads to a drop in 
the tensile stress, which makes the actual application of the discrete spall criteria difficult. The authors of [5-7] discuss the 
possibility of introducing a continuous measure of failure into the spall criterion; such a measure may be the dimensions and 
number of the cracks in the specimen, the residual strength of a half-ruptured specimen, etc. Experimental information on 
the failure process can be obtained from a metallographic analysis of preserved specimens [5, 6], or from experiments on the 
continuous recording of the velocity of the free surface of the specimen when a compression pulse and a "spall" pulse 
emerge onto it [8-11 ]. It is impossible at the present time to obtain continuous quantitative information directly from the 
failure zone. 

In the present article we consider the effect of the kinetics of failure on the gas dynamics of a wave process. In the 
gas-dynamic analysis of a phenomenon, it is most convenient to use the specific volume of a crack, v ,  as the measure of 
the failure. The shear strength of the medium will be disregarded in what follows. The rate of growth of the cracks (or 
pores), as can be deduced from general considerations [6, 7], is determined by the value of the negative pressure p acting on 
the material and by the degree of failure achieved, vc, : 

Vet --=/(p, Vet), (1) 

Barbee et al. [6] have proposed specific expressions for the failure kinetics of (1), which are based on a model of exponential 
generation and ductile growth of the cracks. 

In order to see what kind of information concerning the effect of continuous failure on the gas dynamics of the 
process can be obtained in general form, we shall follow the change of state of a substance along the characteristics in a 
linear material, i.e., in a material whose equation of state has the form 

p~- ( 0p ') _ a 2 (2) 
~ 5 - b - ) ~ = = c o n , ~  - = c o ~ s t ,  

where p, 0 o are the instantaneous and initial values of the density of the substance. The specific volume of the failed 
medium, v, consists of the volume of the solid material, Vso v and the volume of the cracks, vet: 

v = Vsol+ Vet. (3) 

The equations of motion and continuity, taking account of (1)-(3), for a one-dimensional case have in Lagrangian 
coordinates the form 
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